学科分类
/ 5
84 个结果
  • 简介:探讨了聚(硅氧烷己胺)(PDMSA)增韧线性酚醛树脂的机械性能(弯曲强度、弯曲模量和缺口悬臂梁冲击强度),热稳定性和阻燃性能。由于PDMSA的软链段能吸收外加于脆性线性酚醛树脂网络结构的负荷,改性的线型酚醛的机械性能随PDMSA含量增加而提高。热失重分析(FGA)结果表明,其热降解温度高于400℃,失重10%的温度随PDMSA含量增加而提高,碳化率随线型酚醛树脂含量增加而增加。用扫描电子显微镜(SEM)观察了改性酚醛树脂的断裂表面的形态,其结果与其机械性能变化一致。改性线型酚醛树脂还具有优良的阻燃性(UL—94V—I级),氧指数35.0以上。

  • 标签: 聚(二甲基硅氧烷己二酰二胺) 改性 线型酚醛树脂 机械性能
  • 简介:在进行了一项长达10年之久、多达588项之多的风险研究和评估之后,欧盟委员会终于在2005年10月15日公布了决议,将十溴列入《电子电气设备中限制使用某些有害物质的指令》(RoHs指令)的豁免清单,最终定论十溴对人体健康和环境无风险和危害。2005年9月2日,欧盟成员国就是否将十溴纳入豁免清单进行投票表决,其中超过2/3的成员国投了赞成票。

  • 标签: ROHS指令 十溴二苯醚 欧盟委员会 豁免 阻燃剂 欧盟成员国
  • 简介:以前曾指出由3,3’,4,4’-联苯基四羧酸酐(BPDA)和1,2-双(4-氨基苯氧基)苯(亦称三苯基邻苯胺(TPEC))衍生的聚酰亚胺具有优异的拉伸性能和良好的热性能。本文对由BPDA、TPEC及其它芳香族胺制备的共聚酰亚胺的性能做了初步评价。由BPDA和各种芳香族胺制备的均聚酰亚胺通常具有良好的机械性能和热性能。然而,它们不溶于现有的各种有机溶剂中。在某些条件下,用BPDA与等摩尔TPEC和其它芳香族胺混合物可以制备可有机溶解的BPDA型共聚酰亚胺。这些共聚酰亚胺可以形成坚韧的薄膜,它们具有较高的模量和强度。多数情况下,也具有较高的断裂伸长率。

  • 标签: 联苯基四羧酸二酐 三苯基醚邻苯二酚二胺 聚酰亚胺 机械性能 韧性
  • 简介:用聚邻苯酸乙酯(PEP)和邻苯酸.对苯酸乙酯共聚物改善甲基六氢化邻苯酸酐固化的3,4-环氧基环己甲酸3’,4'-环氧基环己甲酯脂环族环氧树脂(Celoxide2021TM)的脆性。芳族聚酯在没有溶剂的情况下可溶于环氧树脂中,也是固化环氧树脂有效的增韧改性剂。例如,固化树脂体系中加入质量分数为20%PEP(MW,7400)就使断裂韧性增加130%,并且没有力学性能和热性能损失。根据改性的环氧树脂体系的形态及动态的粘弹性行为讨论了这一增韧机理。

  • 标签: 脂环族环氧树脂 环氧基 增韧改性剂 邻苯二甲酸 共聚聚酯 乙酯
  • 简介:1种半结晶聚合物,全规聚(苯基-乙醇基)(i-PPGE)被用来改性环氧树脂(1,8氨基-p-甲烷(MNDA)和4,4’-氨基苯砜(DDS)用作固化剂)。在MNDA固化的树脂中,当树脂混有5%的i-PPGE时,分散相为直径0.5-1.0um的环形颗粒。在DDS固化的树脂中,分散相的粒径分布更密。这种区别归因于固化剂的反应活性以及固化机理不同。通过动力学分析,发现在MNDA固化体系中,i-PPGE比DDS固化体系的结晶度更低,尽管用这2种固化剂固化的改性树脂在形态和微观结构上有明显区别,但i-PPGE的增韧效果是相似的。当掺入5%的增韧剂后,分别用DDS和MNDA固化的树脂,其临界应力密度因子(KIC)分别提高了54%和53%。i-PPGE和典型的增韧剂端羧基丁腈橡胶在增韧环氧树脂的效果上是一致的。i-PPGE的优势在于对树脂的模量以及玻璃化转变温度的影响较小,但这种改性剂引起弯曲强度的下降。

  • 标签: 环氧树脂 固化机理 结晶度 结构表征 改性剂 弯曲强度
  • 简介:以Zn0.676Al0.328(OH)2(NO3)0.377,·0.682H2O为前体,无水乙醇作分散剂,在pH值为5~6、温度80℃条件下采用离子交换法组装了手性拆分剂D-(+)-对甲基苯甲酰酒石酸(DTTA)插层锌铝水滑石,并采用XRD、FT-IR、DSC-TG、ICP和EA等现代物理化学分析技术对样品进行表征。结果表明,通过控制离子交换条件,可成功将DTTA插入到锌铝水滑石层间,得到的有机-无机复合材料结构完整,晶相单一,具有良好的层状结构,其层间距从0.90nm扩大为2.07nm。DTTA插入水滑石后,完全燃烧分解温度从346℃升高到470℃。

  • 标签: 锌铝水滑石 D-(+)-对甲基二苯甲酰酒石酸 插层 离子交换
  • 简介:对于烧蚀组成物和作为碳碳复合材料的一些聚合物而言,加入固化性炔丙基酚醛树脂可以提高热稳定性,玻璃化温度Tg和高温耐久性。这种高Tg和低吸湿性及很好的力学性能,使其成为环氧树脂的优良替代品。有人试图用炔丙基改性来改进苯酚一甲醛树脂的粘接性能。炔丙基与可熔性酚醛混合可以得到具有很好的粘接尺寸稳定性和耐热性的热固性树脂。炔丙基酚醛树脂型配方,具有很好的层压操作性和固化性,具有很好的抗热性能、抗潮湿性能和低介电常数。丙炔基酚醛树脂改性,已使酯-酰亚胺(聚酯-聚酰胺)予聚体、聚苯丙恶唑等的热性能得到提高。

  • 标签: 酚醛树脂 抗热性能 炔丙基 碳碳复合材料 粘接性能
  • 简介:用3,6-(甲氧基甲基)均四甲苯与不同的元酸或酸酐如:邻苯酸酐、马来酸酐和琥珀酸及不同的甘醇如:1,2-丙甘醇、缩三乙醇、1,4-环己醇和3,6-(苄氧基甲基)均四甲苯反应制备一组不饱和聚酯树脂。使用红外光谱和核磁共振光谱对不饱和聚酯树脂进行定性和定量表征。用末端基团分析法确定其数均分子质量(Mn^-)。结果发现这些聚酯室温下可以与苯乙烯固化,苯乙烯固化后的聚酯的热性能通过热重分析法和差示扫描量热法(TGA和DSC)进行研究。

  • 标签: 3 6-二(甲氧基甲基)均四甲苯 不饱和聚酯 制备 热性能 固化
  • 简介:采用低饱和态共沉淀法,辅助微波手段,快速制备了十二烷基磺酸钠(SDS)改性水滑石SDS-MgnAl-LDHs,将其煅烧产物SDS-MgnAl-LDO用于亚甲基蓝的脱色研究。考察了SDS-MgnAl-LDHs制备条件和亚甲基蓝的脱色条件对脱色率的影响。结果表明,在最佳的条件下可达到完全脱色;SDS-MgnAl-LDO可重复利用,平均脱色率为92.01%,重复使用4次后,SDS-MgnAl-LDO的脱色性能基本稳定。

  • 标签: LDHS 微波晶化 SDS 亚甲基蓝
  • 简介:聚苯硫(PPS)由苯环和硫原子交替排列构成,使得PPS结构规整,拥有较高的结晶度,同时苯环为PPS提供良好的刚性和耐热性,而硫键赋予PPS一定的柔顺性,因此PPS具有优异的综合性能[1,2],被誉为是继聚碳酸酯(PC)、聚酯(PET)、聚甲醛(POM)、尼龙(PA)、聚苯醚(PPO)之后的第6大工程塑料,也是8大宇航材料之一[3],广泛应用于航天航空、电子、汽车、环保、化工等领域。

  • 标签: 聚苯硫醚 催化剂 PPS 合成方法
  • 简介:在正辛醇体系中,通过溶剂热反应制备出表面具有超细纳米棒的TiO2微米球,通过X射线衍射确定了产品的物相和组成为金红石结构的TiO2,通过扫描电镜和透射电镜对样品的外观形貌、大小以及表面结构进行了观察,利用差热-热重分析仪对样品的固含量进行了测量,最后利用所制备的TiO2微米球催化剂降解水溶液中的甲基橙,结果显示其具有较快的光催化速度

  • 标签: 金红石 溶剂热 微球 级次结构 光催化
  • 简介:以KF、SbCl3和SnCl2为原料配制乙醇溶胶,通过在Ti基底上涂胶、干燥、预热处理和煅烧等工艺制备出了F—Sb-SnO2/Ti复合电极。以F—Sb—SnO2/Wi复合电极为阳极,镍片为阴极,施加恒电压观测甲基橙电解液的脱色变化,在正交设计试验基础上,考察溶胶涂层数、煅烧温度、掺杂F离子的浓度等因素对甲基橙降解率的影响,结果表明,固定电解参数电压3V,甲基橙浓度50mg/L,添加荆h(Ⅲ)浓度110mg/L,溶液pH=l,优化的溶胶涂层数9,煅烧温度为773K,溶胶中维持Sn/Sb摩尔比9/1时,优化的KF掺杂摩尔比为0.5时,电解75min,甲基橙的降解率达93%。

  • 标签: 复合电极 二氧化锡 电解催化 甲基橙
  • 简介:以硝酸铈铵为引发剂,将丙烯N(AA)和N-羟甲基丙烯酰胺(NMA)混合单体与医用纱布进行非均相接枝共聚,讨论了聚合温度和时间、引发剂浓度、单体浓度及配比对接枝共聚反应的影响,对接枝后的纱布进行保水性测试,发现在医用纱布上接枝含亲水性基团的丙烯酸和N-羟甲基丙烯酰胺混合单体,可以改善纱布的吸湿保水性能。

  • 标签: 医用纱布 铈离子 接枝共聚 吸水性
  • 简介:洗涤过滤的主要原理是利用偏钛酸的水不溶性与杂质离子的水溶性进行液固分离。介绍了几种常用的洗涤过滤设备,通过对各种设备的比较,提出了500t/a和1000t/a两种规模工业生产的洗涤过滤方式:500t/a规模采用多孔陶瓷膜洗涤、隔膜压滤机过滤;1000t/a规模采用隔膜压滤机或摩尔过滤机一次洗涤、摩尔过滤机次洗涤或摩尔过滤机级水洗工艺,并对主要设备的选型进行了计算。

  • 标签: 纳米二氧化钛 生产规模 洗涤过滤 工业生产
  • 简介:玻璃化转变是决定聚合物改性与加工等综合性能的重要环节。基于分子动力学方法,采用NPT(等温等压)正则系综,研究了聚丁酸丁醇酯(PBS)的玻璃化转变行为及主要影响因素。结果表明,PBS玻璃化转变温度为243.7K,与前人实验结果较为吻合;面角扭转能、非键能及分子内氢键强度在243.7K附近发生突变,对PBS的玻璃化转变行为起到重要作用,是导致PBS出现玻璃化转变的根源之一。

  • 标签: 分子动力学 聚丁二酸丁二醇酯 玻璃化转变 力场能量项 氢键