学科分类
/ 1
15 个结果
  • 简介:采用Ag-Cu-Ti钎料连接C/C复合材料,用扫描电镜(SEM)、能谱仪(EDS)、X射线衍射仪(XRD)等分析连接层的微观结构与相组成,并测试连接层的剪切强度。结果表明:C/C复合材料连接层的剪切强度跟连接温度与保温时间有关;在850℃、保温30min条件下获得的连接层剪切强度最高,达到26.7MPa;同时连接层与基体材料形成机械嵌合,界面发生元素扩散和冶金反应。钎焊连接层形成固溶体和化合物,包括Ag(s.s)、Cu(s.s)、Cu4Ti3和TiC。剪切断口形貌表明钎焊层与C/C坯体之间结合较好,具有一定的连接强度。

  • 标签: 炭/炭复合材料 AgCuTi 钎焊连接 组织结构
  • 简介:引入“固态扩渗+轧制”的表面改性方式,即在研究镁合金薄板表面改性方法及工艺的基础上,采用固态粉末包覆热扩渗的方法,对AZ31镁合金薄板进行表面改性处理,获得研究目标材料;借助有限元软件Ls—DYNA模拟其冷轧过程,获得最优的轧制工艺参数并进行轧制实验,通过x.射线衍射(xRD)、金相显微镜、布氏硬度测量计、往复式摩擦磨损试验机和CorrTest腐蚀电化学测试系统检测材料表面的组织与性能。结果表明:轧制变形后的表面组织晶粒更加细小、均匀;耐磨性有所改善,表面硬度由HB61.4提高至HB63.5,摩擦因数由0.52变为0.6,表面摩擦磨损质量损失由0.33mg降低至0.26mg;表面耐腐蚀性能显著提高,其开路电位由-1.594V变为-1.574V,自腐蚀电位由-1.574V变为-1.38V,自腐蚀电流密度由6.2×10-3mA/cm2变为7.0×10-4mA/cm2。

  • 标签: 轧制 固态扩渗 镁合金 表面性能 LS-DYNA
  • 简介:利用雾化沉积炉制备喷射成形2060高速钢沉积坯,经过锻造后再进行盐浴淬火和回火处理,研究喷射成形2060高速钢及其热处理后的组织与力学性能。结果表明:喷射成形2060高速钢沉积坯的表面较光洁,无明显的宏观偏析,晶粒较细小,晶粒尺寸约为20邮1,沉积坯的相对密度在99.5%以上;沉积坯中主要存在M6C和MC两种碳化物相,均匀弥散分布在晶界与晶内以及基体中,氧含量只有1.6×101左右。2060高速钢的抗弯强度随淬火温度升高而逐渐降低,淬火温度应低于1210℃。在1170-1190℃下淬火时可获得抗弯强度≥3000MPa、硬度≥70HRC的良好综合力学性能。

  • 标签: 喷射成形 高速钢 力学性能 组织
  • 简介:采用粉末冶金组合烧结技术制备由Fe-Cr-Mo-P-Si-Cu-C凸轮和16Mn钢管为芯轴组成的中空凸轮轴,对凸轮的密度、硬度等物理性能、摩擦磨损性能和微观组织进行测试与分析,研究烧结致密化机理,并与传统凸轮材料球墨铸铁的摩擦磨损性能进行对比。结果表明:Fe-Cr-Mo-P-Si-Cu-C凸轮材料在烧结过程中产生Fe-C-P三元液相,Cr、Mo元素溶解于液相中使得液相量显著增加,促进液相烧结,体积收缩率高达19.1%。凸轮材料的平均密度为7.51g/cm3,平均硬度(HRC)53.7,与钢制芯轴形成牢固的冶金结合,扭矩高达1150N·m,连接可靠性较好;该凸轮材料的硬度与传统球墨铸铁凸轮材料相近,耐磨性是球墨铸铁的3倍,质量减轻35%,满足发动机使用要求。

  • 标签: 粉末冶金 中空凸轮轴 组合烧结
  • 简介:对AA1050工业纯铝在动态高应变速率(1.2×10^3s-1)和准静态低应变速率(1×10^-3s-1)下进行单向压缩和多向压缩加载,单向和多向压缩以相同的道次应变量进行,累计应变量分别为1.6和3.0,利用TEM观察变形后合金的微观组织与结构特征。结果表明,多向加载或/和高应变速率变形有助于金属塑性的发挥。单向压缩变形后的试样产生类似竹节状片层组织,拉长的亚晶或位错胞分布于组织内。经多向压缩变形的合金组织表现为大量近似等轴状的亚晶或位错胞,位错缠结严重。高应变速率变形过程中,动态回复受到抑制,可产生更高的位错密度,从而组织细化效果优于低应变速率变形。

  • 标签: 单向/多向压缩 应变速率 晶粒细化 位错
  • 简介:采用全自动控制往复喷射成形工艺制备工业规格7055铝合金锭坯,研究热挤压工艺对喷射成形7055铝合金的显微组织和力学性能的影响。采用电子背散射衍射技术对经不同热挤压后7055铝合金的织构进行研究。结果表明,喷射沉积锭坯组织为等轴状晶粒,均匀细小(30~50gm),基体中不存在枝晶型偏析。由于喷射沉积工艺本身的特点,在合金中存在大量的显微疏松缺陷。沉积锭坯经过热挤压致密化后,合金力学性能显著提高,抗拉强度巩为390MPa,伸长率6为13.3%,表明热挤压工艺可有效消除疏松缺陷,从而充分发挥出喷射沉积工艺的优越性。EBSD分析表明,挤压后沿着挤压轴方向形成丝织构,主要为(001)与(111)两种织构。

  • 标签: 7055铝合金 喷射成形 热挤压 显微组织 织构
  • 简介:以Cu为基体,加入Co,Fe,Cr,Sn粉末,采用不同的工艺进行混合,经模压成形与热压,制备Sn含量(质量分数)分别为4%和6%的2种超薄cu基金刚石切锯片胎体材料,用显微硬度仪、金相显微镜(0M)、扫描电镜(SEM)和X射线衍射(XRD)仪等表征该胎体材料的显微硬度、组织和成分,研究混粉工艺对胎体组织和硬度的影响。结果表明:将采用所有原料粉末进行混合球磨的混粉工艺时,所得胎体材料含有更多的铜锡固溶体,胎体平均硬度(HV0.1)比未经球磨混粉的分别提高186.20MPa(含4%Sn)和215.30MPa(含6%Sn);与之相比,采用将Cu粉和sn粉混合球磨后再加入其他粉末的混粉工艺制备的胎体,平均硬度略有提高;球磨后sn粉附着在Cu粉上,更易形成铜锡固溶体,并且金属粉末大量变形,发生严重的加工硬化,从而影响冷压成形率;随胎体中sn含量从4%增加到6%,铜锡固溶体增加,胎体的平均硬度(HV0.1)分别从709.91、884.25和896.1lMPa提高到883.18、986.22和1098.48MPa。

  • 标签: 热压 Cu基胎体 球磨 固溶体 硬度 组织
  • 简介:通过硬度、电导率、光学显微镜和透射电镜等测试手段分析Cu-0.7Fe-0.12P合金的性能与组织,研究形变及时效处理对其组织与性能的影响,得出冷变形量与热处理工艺的优化组合,为该合金的实际生产提供参考。合金经900℃固溶并40%冷轧、450℃时效6h、70%冷轧后,在400、450和500℃分别时效1h。研究结果表明,在450℃时效合金的硬度(141HV)和相对电导率(89.9%IACS)均达到了较好的状态;而直接对合金冷轧变形80%并在450℃下时效1h后,相对电导率为70%IACS,比经双冷轧双时效处理后测得的合金相对电导率小。

  • 标签: Cu-0.7Fe-0.12P合金 形变热处理 显微组织
  • 简介:采用平均粒径为800nm的超细SiC颗粒作为增强体,制备含SiC体积分数为15%的铝基复合材料,研究烧结温度和强压处理对复合材料微观组织和力学性能的影响。研究表明,提高烧结温度可有效加速复合材料的致密化,与520℃下烧结制备的复合材料相比,610℃下烧结制备的复合材料具有更高的密度和较低的孔隙度,从而具有更高的硬度。610℃下烧结制备的复合材料的硬度为83.9HBS,远高于520℃烧结制备的复合材料的硬度(53.7HBS)。这主要是由于烧结温度的提高可加速原子扩散,有利于Al粉之间以及Al粉与SiC颗粒之间的结合,并改善界面结合情况。研究还表明,强压处理可以有效提高复合材料的致密度和降低孔隙的体积分数,610℃下烧结制备的复合材料经强压处理以后的密度为2.68g/cm3,接近于理论密度(2.78g/cm3),且硬度可达121HBS,抗拉强度、屈服强度和伸长率分别可达177.6MPa、168.6MPa和3.97%。

  • 标签: AL基复合材料 超细SiC 力学性能 显微组织
  • 简介:将铜粉和碳粉分别按质量分数为Cu-2%C和Cu-8%C配比混合,经过高能球磨得到铜-碳复合粉末,然后冷压成形,压坯在H2气氛、820℃温度下烧结2h,获得铜-石墨块体材料。采用X射线衍射、扫描电镜、透射电镜以及电导率测试仪等对高能球磨后的复合粉末和块体材料的物相组成、微观组织结构与导电性能进行分析,研究球磨时间与碳含量对铜-碳复合粉末与块体材料的组织结构及性能的影响。结果表明,铜碳混合粉末经高能球磨,得到亚稳态Cu(C)过饱和固溶体,经固相烧结后形成“蠕虫状”组织。随球磨时间延长,材料密度先增加后减小,球磨24h时密度最大,Cu-2%C和Cu-8%C材料的密度分别为7.58g/cm3和6.79g/cm3;电导率随球磨时间延长而增加,球磨72h时Cu-2%C和Cu-8%C的电导率分别为54.2%IACS和33.0%IACS。

  • 标签: 铜碳 复合材料 机械合金化 烧结
  • 简介:用搅拌铸造法制备原位合成硼化物增强Mg-Li基复合材料,针对复合材料中增强相分布不均的问题,在制备过程中综合采用B4C粉末沉降分级和B4C/Li-Mg预合金挤压-重熔的工艺,研究该工艺对预合金和硼化物/Mg-Li基复合材料组织和性能的影响。结果表明:对B4C粉末进行沉降分级能明显除去粉末中的微细颗粒,减少粉末间的团聚,并降低粉末氧含量。组合使用粉末沉降分级和预合金挤压-重熔工艺能显著提高预合金的密度和伸长率,改善B4C粉末在预合金中的分散性;用该预合金制备的硼化物增强Mg-Li基复合材料性能最佳,与未采用上述分散工艺制备的复合材料相比,增强相分布的均匀性明显改善,在保持良好抗拉强度的情况下伸长率和抗弯强度分别提高124.47%和7.51%。

  • 标签: B4C 分散 团聚 挤压 MG-LI 塑性
  • 简介:通过添加W粉或C粉调整WC原料粉末的总碳含量(质量分数)为6.04%~6.16%,采用低压烧结法制备WC-9Ni-1Cr细晶硬质合金。采用光学金相显微镜、X射线衍射、扫描电镜等,研究碳含量对WC-9Ni-1Cr细晶硬质合金组织结构及性能的影响。结果表明:在WC-Ni系合金中添加适量的Cr元素,得到无磁WC-Ni硬质合金,并且其无磁特性不随合金中碳含量的变化而发生转变。WC粉末的总碳含量为6.04%~6.16%时WC-9Ni-1Cr细晶硬质合金为二相区的正常组织,只存在WC相和Ni相,没有石墨夹杂或η相;而且在此二相区范围内WC的碳含量变化对WC-9Ni-1Cr细晶硬质合金的耐腐蚀性没有明显影响。随WC粉末的碳含量增加,合金硬度(HRA)与密度都逐渐降低,但降低幅度较小,而合金的抗弯强度逐渐提高。碳含量由6.04%增加至6.16%时,抗弯强度由2250MPa提高到2850MPa,提高26.6%。

  • 标签: 碳含量 硬质合金 微观结构 性能
  • 简介:在316L不锈钢粉末中添加Cr2N粉末,采用粉末注射成形工艺制备Cr2N增强奥氏体不锈钢,利用扫描电镜观察与能谱分析以及洛氏硬度测定,研究Cr2N对MIM316L不锈钢组织、成分与硬度的影响,并通过中性盐雾试验研究Cr2N对MIM316L不锈钢抗腐蚀性能的影响。结果表明,316L不锈钢中添加Cr2N后,显微组织仍为典型的奥氏体组织,材料的密度与硬度都有所提高。Cr2N添加量为3%时,不锈钢硬度由64.5HRB提升至78HRB,并且不会导致抗腐蚀性能下降。

  • 标签: 金属注射成形 奥氏体不锈钢 硬化 氮化铬
  • 简介:选择不同粒径的6061A1粉末和SiC颗粒,采用真空热压法制备含35%SIC体积分数的SiCo/6061AI复合材料,研究不同级配比对复合材料显微组织和抗拉强度的影响。结果表明:复合粉末的粒径级配比可影响复合材料的微观组织和力学性能;当增强体颗粒粒径为15μm时,随基体6061粉末与SiC颗粒粒径比降低,SiC颗粒在复合材料中的分布越来越均匀,抗拉强度提高:当基体6061A1粒径为10Bin时,随SiC颗粒粒径减小,复合材料微观组织的均匀性降低,但抗拉强度提高。并建立了理想的复合粉末颗粒分布模型,模型的理论计算结果与Slipenyuk公式计算结果接近。

  • 标签: SiC/606 1复合材料 颗粒粒径 粒子分布模型 颗粒级配 抗拉强度
  • 简介:将Fe(60)(NbTiTa)(40)合金粉末与纯铁粉分别进行45h高能球磨,获得Fe(60)(NbTiTa)(40)非晶粉末和粒度约10μm的铁粉,然后通过放电等离子烧结制备Fe(60)(NbTiTa)(40)体积分数分别为5%、10%、15%和20%的Fe(60)(NbTiTa)(40)颗粒增强铁基复合材料,研究15%Fe(60)(NbTiTa)(40)/Fe混合粉末的烧结致密化行为和Fe(60)(NbTiTa)(40)非晶粉末含量对材料力学性能的影响。结果表明:Fe(60)(NbTiTa)(40)合金粉末经球磨45h后转变成非晶态,其过冷液相区达到112℃。通过SPS可实现混合粉末的快速致密成形,增强颗粒含量对复合材料的密度影响不大,材料的致密度在97.5%左右。非晶合金粉末的加入可细化基体相的显微组织,并且随Fe(60)(NbTiTa)(40)颗粒含量增加,基体相变得更细小和更均匀,复合材料的硬度和强度均显著增大。20%Fe(60)(NbTiTa)(40)/Fe材料的显微硬度为232HV,屈服强度和极限压缩强度分别为650MPa和743MPa。

  • 标签: 放电等离子烧结 铁基复合材料 非晶合金 颗粒增强 力学性能