变电运维中红外测温技术的实践

(整期优先)网络出版时间:2020-06-19
/ 2

变电运维中红外测温技术的实践

焦萍

国网晋城供电公司 山西省晋城市

摘要:在城市的发展中,处处离不开电能的需求,电力企业的重要性不言而喻。在电力系统运行的过程中,常常会发生电力发热的问题,其是导致安全事故频发的主要原因之一。其次,就是电力线路老化问题,电力企业在日常工作的过程中,要做好电力设施设备的维修养护工作,保障其高效、安全的运行,这就对工作人员提出了更高的要求,其要在不触电、不靠近、不断电的前提下完成工作,于是,红外测温诊断技术应运而生。

关键词:变电运维;红外测温技术;实践 

引言

红外测温技术凭借其便捷性、安全性与高效性等性能优势,在变电设备运维巡检过程中获得了大力的推广与应用,能够实现对设备运行状态、故障隐患的科学评估与全面排查,在不影响变电设备正常运行的基础上实现全生命周期运维管理。

1红外测温技术在变电运维中的工作原理和优势

(1)红外测温技术的工作原理。红外测温技术的产品质量监控在对设备的安全性和节能性上起着至关重要的作用,近些年来红外测温的设备在技术上不断地进行研发和创新,使其能够覆盖更多的范围,内部功能更加丰富,红外测温设备逐渐占据了市场的主导地位。与其他的检测设备相比较,红外测温设备具有反应更快、无须接触、方便携带等优点,功能更加人性化,也更符合检测技术人员的需要。红外测温技术简而言之就是利用红外线,对变电运行中的一些供电设备进行温度检测,主要是实时地对供电设备的运行进行分辨和检查其是否正常,或有无其他的故障。主要的原理就是让原子和分子在规律的高速运动的过程中对热度产生一定的感应,若供电设备发热,红外测温设备就会感应到并且显示当前状况,相关技术人员看到了就能够及时进行维修,及时避免造成更大的损失。

(2)红外测温技术的优势。一般情况下,红外测温技术优势主要体现在使用方便、原理简单、独立工作、提升工作效率四个方面。红外测温技术所使用的设备体积相对比较小,并且轻便,从而致使其在使用操作方面比较便捷。原理简单主要是指红外测温技术通过热成像进行作业,这样不仅提高工作效率,还可以提升安全性。在通信设备正常运行使用的情况下,红外测温技术将获取的信息直接转换,然后利用数字设备对其进行显示,从而保证工作的有效性。

2红外测温技术在变电运维中的应用

2.1状态检测

在变电站运维中,红外线测温技术最主要的应用路径,就是对设备的运行状态进行检测,且该技术下的检测手段较为灵活,可以满足多种工况下的设备检测要求,避免因为断电检测所造成的影响。从变电站设备运行过程来看,大部分的变电配件中均带有电荷,电荷在正常运行状态与非正常运行状态下所产生的热能是不同的,这也决定了该技术在不同环境下的检测效果存在差异。因此在状态检测过程中,需要根据设备操作规范启动检测设备,对目标设备进行扫描,了解热量图像中的信息,总结出现热量问题的原因;之后对存在异常温度的部位进行二次检查,保证检测结果的精准性。

而为了确保状态检测数据的准确性,还需要重点关注以下内容:①对于被检测的物体,需要确定具体的对照物,如环境温度等;②在检测过程中,不应该使用其他设备,而是在相同的设备下实现对故障信息的识别;③对比结果应该具有针对性,所以在操作过程中需要保证位置朝向、间隔等基本信息的参数不变。

2.2故障检修

随着人们对电力资源的需求量在不断增加,电力工程的负荷承载力也在不断增加,因此变电运维的难度也在不断增加。因此将红外测温技术运用到故障检修中,可以提高故障检修的效率和速度,准确、及时的收集有关信息并进行分析,找出故障源和故障点。变压器是电力核心设备,在故障检修中,就可以采用红外测温技术。虽然变压器的故障类型可以分为很多种,但是都会引起变压器表面温度的上升。当出现金属绕组锈蚀导致短路时,变压器的表面温度就会急剧上升。如果出现导线断裂以及接触不良时,变压器的表面温度与室内温度差异较小。

本文以变压器金属绕组锈蚀为例进行分析,变压器在实际运行中,如果养护工作没有做到位,就会导致变压器金属绕组锈蚀情况出现。锈蚀部位的电阻就会增大,变压器在运行中,由于锈蚀部位的电阻增加,温度上升速度也会加快,如果变压器某处的温度上升幅度高出正常工作平均温度的百分之十五以上,则表明变压器存在金属绕组锈蚀情况。通过红外测温技术的应用,就可以及时了解变压器的温度变化情况,然后对其故障进行分析,进而制定切实有效的解决措施。

2.3缺陷检测中的应用

所谓的缺陷检测,其实是针对变电运维系统中存在的不足之处进行的一种预防性检测。根据相关调查研究表明,缺陷检测主要分为电流致热型缺陷和电压致热型缺陷两类,二者缺陷检测都是根据温差成像进行判断。电流致热型缺陷主要是指设备接触连接不良、导线金属内芯的横截面不足等。在检测过程中,通过红外测温技术检测,从而生成热图像,与常规工作状态下的图像进行对比,从而判断是否存在缺陷。针对变电设备接触不良进行检测时,导线和插头在通电运行过程中,其温度会发生变化,但是停止运行时,其温度将会接近于温室的温度。由于接触不良致使连接失效,最终造成线路温度下降,对此,合理利用红外测温技术对其进行检测,一旦温度变化波动过大,则表明变电运维存在接触不良的缺陷问题,在断电的情况下对其进行排查。电压致热型缺陷主要包括电压过大致使的导线烧熔、漏电、绝缘子故障等一系列问题现象,如果这些问题现象无法得到及时处理,则会引发严重后果,甚至会对人们的财产人生安全构成威胁。由于电力设备内部构件主要使用绝缘介质进行包裹,进而与奇特构件产生电力反应,进而促使电力系统正常运行。但是绝缘介质出现老化、损坏时,通过红外测温技术进行检测,则会发现其温度发生变化,逐渐射高,当温度幅值超过正常范围20%以上,必须立即断电,对其进行检测,查看是否存在缺陷问题。

3经验

在变电站运维中,应用红外测温技术可以结合红外成像技术、电脑运算等方法,根据电力设备本身所具有的能量辐射水平,实现对设备的温度检测,再配合相应的系统技术支持,可以更有效的对设备运行状态进行评估,进而掌握设备的运行状态,判断各种故障的发生情况。导致设备出现故障现象的原因因素主要包括:①接头连接、安装工艺不理想。在抛光连接时,使用了不合格的砂纸,虽然可以有效的除去设备表面的锈蚀、氧化物等保障了电力传输效果,但是也会将碎粒、石英片等杂物压入打磨孔中,最终影响了连接点的连接效果。②螺栓紧固压力不当。一些工作人员在处理故障时,错误地认为需要在最大力度上拧进螺栓,这种情况虽然可以保证螺栓点的连接效果,但是会导致螺栓承受的压力增加,最终引发了弹性变形,导致螺栓部位出现了不规则的改变,最终演变成发热隐患。所以在未来工作中,需要摒弃传统的观念,在更换零部件时要适度用力,必要的情况下可以借助力矩显示器械,强化对力的控制。③不同材料所造成的电池效应。

结语

综上所述,红外测温技术是一项高效、可靠的故障检测技术,在变电运维工作中应用红外测温技术可以通过测量设备温度,分析和掌握变电站设备的运行状态,第一时间找到其中存在的故障和隐患,为工作人员开展设备检修工作提供可靠的数据支撑,对于保证变电设备的稳定可靠运行意义重大。电力技术人员应该重视起来,在现有的技术基础上,展开更加深入的研究,做好总结经验教训,提升红外测温技术的效果,使其能够在变电运维中得到更加合理、更加有效的应用。

参考文献

[1]杨静悦,史哲.红外测温技术在变电运维中的应用[J].建筑工程技术与设计,2019,(19):176.

[2]王萌萌,赵辉,张翔.探讨红外测温技术在变电站运维中的应用[J].魅力中国,2019,(27):348.