学科分类
/ 1
12 个结果
  • 简介:对当前国内外出现的井下作业工艺新技术和长庆井下技术作业状况进行了归纳分析,寻找出长庆油田在井下作业工艺技术方面与国内外存在的差距,提出了长庆油田进一步发展井下作业工艺技术的思路.

  • 标签: 井下作业 长庆油田 井下技术 工艺技术 国内外 状况分析
  • 简介:本文主要侧重分析和研究了解放渠东三叠系一油组储层的吸水能力,注入水的井口压力、启动压力.为该油田开发注水系统地面建设的泵站、阀门、管线的钢级的选型提供了依据.尤其根据油田实际情况提出该油田全面投注时可采取“先酸化后投注”的方式施工,从而减少施工环节,提高投注一次成功率.

  • 标签: (解放渠东油田) (深井试注) (酸化后试注) 吸水指数
  • 简介:经对杏北油田不稳定试井曲线变化特点及变化规律的研究,建立了试井曲线变化特征与动态措施效果的关联关系,实践证明不稳定试井资料能够评价措施效果及储层动用状况,可为油田开发方案的制定及措施挖潜提供重要的科学依据。

  • 标签: 杏北油田 试井资料 动态措施 评价
  • 简介:了解注水波及系数及油层的水淹状况是注水开发油田动态分析的一项重要内容.利用高精度电子压力计测取油水井压力恢复(压降)试井曲线,可判断油水两相流动区域,确定油藏的渗流特征,监测地层流体的流动状态,确定地层参数,了解注水前缘及水淹区含油饱和度的变化,从而为注水开发研究和调整提供可靠的依据.

  • 标签: 不稳定试井 断块油气藏 注水 渗透 水窜 试井资料解释
  • 简介:基于胡七南断块的生产测试资料、岩心分析资料、相对渗透率资料和油田地质与生产开发状况等资料,运用系统软件,分析该断块的剩余油分布状况,确定该断块目的层段的剩余油分布富集区及水淹区,并以此为依据对区块进行综合治理,取得较好的开发效果.

  • 标签: 生产测井资料 东濮凹陷 剩余油饱和度 含水率 胡七南断块
  • 简介:论文综述研究背景在俄罗斯中央高地南部地区密集的农业生产和水供应相对有限的背景下,库尔斯克磁铁矿区采矿业的快速发展造成当地水资源数量和质量指数恶化,其中包括在调查示范区一别尔哥罗德州。在别尔哥罗德地区中心观测点的水文气象和环境监测数据显示,在1968年到2008年期间别尔哥罗德州的水资源质量逐渐恶化,但是少量的数据不能详细地查明因果关系、模拟局部的水文生态状况,也不能相应地通告地方和区域政府机构对于制定水资源保护的措施、计划和方案。

  • 标签: 德州地区 水文气象 化学分析 采矿工业 河流 水资源质量
  • 简介:用一系列试验评价废水中DOM(溶解性有机物)的微生物降解的潜力。废水样从Haifa废水处理站和Qishon水库采集,以2-4个月为一个周期,或者用废水或者用土壤微生物对水样进行培养,其特征用溶解性有机碳含量(DOC)、UV254吸光率和激发荧光-辐射基质表示。根据腐殖质/棕黄酸成分和似蛋白质结构,确定了三个主要的荧光峰值。在生物降解过程中,不同程度地增加了三个特殊荧光峰值,本文建议选择非发光成分。在一些实例中,发现一些废水中的荧光物增加,因而提出(1)生成新的与DOM生物降解有关的荧光物质和(2)降解某些有能力抑制DOM荧光物的有机物。根据荧光物强度和UV254的比值,描述了比其他UV吸收成分发光的DOM成分的不同的生物降解动态。总而言之,大约一半的总的DOM很容易降解,剩余的DOM的浓度在8.10毫克/升之间。灌溉土壤的废水中残留的DOM浓度的升高可能有助于地下水中污染物的DOM的聚集。

  • 标签: 废水 溶解有机物(DOM) 激发排出物(EEM) 生物降解 Qishon(Kishon)
  • 简介:欧盟地质封存潜力项目的工作重点是欧洲二氧化碳点源、基础设施以及地质封存的GIS编图。该项目的主要目标是评价欧洲深部咸水含水层、油气构造与煤层中二氧化碳的地质封存能力。其他优先考虑的事项是进一步开发地质封存能力评价、经济模拟与场地选择的方法,以及开展国际合作,尤其是与中国合作。欧盟地质封存潜力项目成果包括适于二氧化碳地质封存的25个国家和欧洲大多数沉积盆地。

  • 标签: 开发地质 能力评价 二氧化碳 封存 欧洲 欧盟
  • 简介:地质储存是一种能够减少大气中人为二氧化碳(CO2)排放、技术上可行且可直接投入使用的方法。在众多二氧化碳储存方案中,都是使二氧化碳溶解于地层水并将其储存于深部含水层中。含水层储存溶解的二氧化碳的最大能力,就是含水层中饱和二氧化碳总量与当前总无机碳之差,并取决于压力、温度和地层水的盐度。假设在非活性含水层环境下,基于碳酸盐和重碳酸盐离子的浓度,通过能源工业收集的地层水的标准化学分析计算当前碳总量。在实验室环境中开展原位地层水分析时,利用地球化学形态模型计算从水样中释放的溶解气体。为了阐明氧化碳溶解度随水盐度增加而降低,利用纯水中饱和二氧化碳含量的经验关系式计算地层水中的最大二氧化碳含量。通过考虑溶解的二氧化碳对地层水密度、含水层厚度和孔隙度的影响,评估地层水中储存二氧化碳的最大能力,以计算含水层孔隙空间的水容量及水中溶解的二氧化碳容量。这种用于评估含水层中溶解的二氧化碳的最大储存能力的方法,已经被应用于加拿大西部阿尔伯塔盆地的Viking含水层。仅考虑注入高粘度二氧化碳液体的区域,经评估,Viking含水层地层水中储存二氧化碳的能力约为100Gt。随后的简单评估表明,在阿尔伯塔盆地深度超过1,000m的地层水储存二氧化碳的能力约为4,000Gt。该结果同样表明:当含水层地层水中总无机碳(TIC)与饱和二氧化碳溶解度相比非常低时,利用地球化学模型对原位地层水进行分析是不合理的。而且,在这种情况下,甚全可能会忽略当前的总无机碳。

  • 标签: 二氧化碳 溶解度 储存 能力 (容量)含水层 地层水