新能源发电与分布式发电及其对电力系统的影响

(整期优先)网络出版时间:2023-02-02
/ 2

新能源发电与分布式发电及其对电力系统的影响

侯泽宇,冯云海

内蒙古察哈尔新能源有限公司,乌兰察布市,012000

摘要:社会不断发展,人们对电能的需求不断提升,同时,对电能质量及相应发电模式的环保性高低等提出的要求也越来越高。分布式发电的出现,有效弥补了传统集中式发电的不足,通过有效发挥分布式发电实效性的方式,可大幅度提升居民用电稳定性及安全性,针对其开展深入研究非常具有必要性。因此,文章主要对新能源并网对电力系统的影响进行分析,并探讨具体的应对措施。

关键词:新能源发电;分布式发电;电力系统;新能源

随着电力工业日趋成熟,人们开始关注如何在保证电能质量的基础上节约资源、降低能耗,分布式发电的出现成为必然。原有发电模式的特点为集中供电,用户提出的确切需求难以被满足,另外,集中发电设备多为火力发电,需要通过燃烧化石能源的方式为发电提供动力,不仅会破坏环境,还会加快能源枯竭的速度。分布式电站的特点是规模较小,分布在用户附近,直接为用户提供电能。科学技术的发展为分布式发电的完善提供了支持,该发电模式的优势主要体现在可以利用水能、风能等新型能源完成供电工作,不仅使能源使用结构得到优化,能源枯竭的情况也得到了缓解。由此可见,分布式发电是指分布在用户附近、符合特定用户需求、能够为配电网的经济运行提供帮助的技术[1]
1.新能源的发展现状
基于低碳经济的发展背景,开发以及利用清洁能源,追求绿色GDP,最核心的是积极发展清洁能源,通过减少污染气体的排放,达到绿色发展的目标。新能源为可再生能源,具有储量的优势。近年来,我国大力发展新能源,以此保障能源安全,同时推动友好型社会的建设。以湖南为例,优化调度的同时,优先消纳风能、光伏发电、水电等清洁能源,20198月末新能源并网规模同比增长23.3%,清洁能源发电量同比增长57.8%,占全省发电量的45.0%。不过新能源发电技术尚且处于发展阶段,还有很多技术以及运用不够成熟,面临着极大的挑战,需要不断创新和探索,推动新能源发电技术的发展,释放技术的能量[2]
2.新能源发电与分布式发电及其对电力系统的影响
2.1电力系统稳定性影响
一般规模较大的电网有较大的备用空间和较高的调节能力,风电在并网时不需要考虑电能频率的稳定问题,但一些规模较小的电网并非如此。大规模风电场中,多台风力发电机组共同运行,同时进行直接并网工作,会使电力系统电网电压骤降。如果风速远超出切出值,风力发电机会由固定出力状态退出并网状态,随后大规模风力发电机组突然停运,造成极端电容补偿的大量损耗,使电力系统稳定性下降。
2.2对馈线稳态电压的影响
电力系统的运行过程中,电压的调节往往需要通过专有的设备来实现,比如,有载调压变压器分接头的改变、投切电容器,能够使得电压符合电力系统稳定运行的需求。新能源并网以后,电力系统中的新能源发电往往占据了较大的比例,这种情况下,当发电功率存在较大的波动时,电力线路中的负荷也会随之发生一定的变化,此时,如果依旧采用传统的调压方式,往往难以保障电压的质量。在电压调节过程中,必须要结合电力系统的运行需求,进行调压方案的改变,保障新能源发电良好的电压控制效果。一般情况下,电网与新能源发电站往往存在着公共衔接点,在此衔接点,接入电网短路容量、输电线路阻抗、新能源发电穿透功率都会对电压稳态产生一定的影响,因此,新能源并网对电压的影响,需要通过对这些因素的控制与调节来实现,以保障良好的电压稳定性。
2.3新能源并网导致电网出现谐波
分布式电源接入到配电网时,需要大量的并网逆变器。这些逆变器采用脉宽调制控制方式,在并网时会产生大量的电流谐波。太阳能光伏发电设备和风力发电设备在运行过程中,受到光照强度、太阳照射角度、物体阴影以及风速等方面的影响,输出功率会发生一定的变化,从而导致大量的谐波。造成并网风力发电机组电网谐波出现的主要因素包括两个方面:一方面是风力发电机组并联补充的电容器和线路阻抗发生谐振产生谐波;另外一方面是风力发电机组内部安装了大量的电子设备,这些电子设备在运行过程中可能产生一定谐波[3]
2.4孤网的问题
在大电网出现失压现象时,并网的风力发电与光伏发电都还在继续进行发电,同时还与本地负载相连接,进而形成一个新的平衡网,这就是孤网。此时大电网会失去对孤网电压及频率的控制。脱离大电网的控制后,受电的位置如果出现变化或者是输出功率出现变化,就会导致孤网崩溃,进而导致孤网的电压和频率都发生变化。如果变化没有超出可控范围,那么产生的影响和危害尚且可以控制;但是一旦超出可控范围,就会对电路造成破坏,严重时可能会破坏整个装置;在供电不足的情况下会导致逆变器过载,进而破坏逆变器。
3.新能源发电与分布式发电及其对电力系统影响的应对措施
3.1协调控制储能与新能源
由于新能源并网后对电力系统电能质量产生了一定的影响,因此,为提高电能质量,有关部门与人员需要协调控制储能与新能源。主要从以下方面来进行:第一,加强对储能与大面积新能源发电整合、并网的管理与控制,在一些特殊的环节,需要做好相应的协调控制工作,积极在相关领域分散控制管理模式的推广,保障新能源能够发挥其应有的作用,实现电力网络的多元化。第二,加大在专业储能技术方面的投入,主要从加强新能源电网的管理着手,比如,积极推广与应用新能源发电装置,优化相关的发电装置,升级风电与光电的爬坡率,避免新能源并网中相关的限制

[4]
3.2提高分布式能源并网水平
每个分布式发电系统中电站都是独立的,且相互不产生干扰,通过有效发挥分布式发电实效性的方式,可大幅度降低停电问题出现的几率,促使居民用电的稳定性和安全性有效提升。同时,城市化建设脚步的不断加快,导致各类能源消耗问题逐渐突显出来,只有加大新能源的研究力度才可以确保各环节建设工作的有效开展。分布式发电的出现和发展使得传统集中式供电模式发生了改变,通过对水能和风能等能源的有效应用,实现了大幅度降低自然资源开采和消耗量的目的,缓解了我国资源紧缺的现状,促使能源的利用率得到了大幅度提升。分布式发电促使电力传输过程中的损耗降低,电力的利用率大幅度提升,同时,无需再通过建设配电站的方式实现供电,不仅节约了建设以及人力等的投入成本,对确保供电安全,减少电力传输对自然环境造成的不良影响也具有积极意义[5]
3.3解决谐波的影响
谐波出现是因为电子设备而导致,无论是风力发电机本身存在问题还是并联补偿电容器与线路出现了问题,都是能够避免的。因此,在风力发电厂中,必须要避免单独升高或者是降低风速的情况,对于风电机要避免进行集中连接,以免局部的谐波电压增加。可以采用不同的风机混合装置,然后对电力系统装配合理的谐波过滤装置,避免电网中的谐波影响,同时在产生谐波时适当地应用动态及静止无功补偿装置[6]
3.4无功电压控制
在新能源并网电力系统无功电压的控制上,需要从以下方面来进行:第一,无功电压的管理与控制与功率计算之间存在着紧密联系,相关人员需要结合二者之间的关系,采用相关的无功设施内部响应机制,发挥静态与大容量调换设施的作用,将间歇性新能源场中的无功电压加以科学管理,必要情况下,可以应用小幅波动的动态装置,提升新能源并网电力系统运行的稳定性与可靠性。第二,将新能源场站群管理与无功电压管理相结合,提高新能源并网电力系统的电能质量[7]
结语
综上所述,我国新能源发电并网对电网的电能质量还存在一定影响,极大地威胁了电力系统的正常运行。为了保证新能源发电并网推动我国电力系统的稳定发展,相关的技术部门与工作人员必须要不断研究和完善相关的技术标准,发挥新能源优势,提高电力新能源的应用水平,实现电力实业可持续发展。

参考文献
[1]张超.新能源发电并网对电网电能质量的分析研究[J].中国设备工程,2019(19):230-231.
[2]薛易,李坚,张旺,等.光伏并网储能系统电能的控制策略[J].黑龙江科技大学学报,2019(3):322-328.
[3]苑佳卉.新能源发电与分布式发电及其对电力系统的影响[J].城市建设理论研究(电子版),2019(09):2.
[4]樊烜尚,何欣洁.浅析分布式发电对电力系统的影响[J].电子制作,2019(22):87-88+86.
[5]曹钰.新能源发电在电力系统中的应用[J].电子技术与软件工程,2019(21):227-228.
[6]苏萌.分布式发电技术在电力系统中的应用综述[J].价值工程,2019,38(27):227-228.
[7]张曦.分布式发电对电力系统的影响[J].集成电路应用,2019,36(09):104-105.